Evaluation of Image Colourization Approaches

Filip Appelgren Jakob Berggren Erik Bavenstrand Oskar Hahr

Abstract

This paper delves into the modern ways of adding colour to monochrome - black-
and-white - images, through the use of deep learning. We take inspiration from
previous works to implement a U-Net architecture that attempts to colourize 64x64
images taken from the Imagenet dataset. The network is used to implement two
different methods of colourization, one through regression and the other through
classification. The training was done on a dataset of 50000 images for the regres-
sion, and 30000 for classification. The results indicate successful colourizations
using both methods with the U-net architecture. The way of classification shows
more vibrant colours than regression, but also assesses bolder colours which can
lead to strange results. Improvements to the results could possibly be achieved
through a variety of adjustments, such as a larger dataset, a more advanced network
as well as training the network training.

1 Introduction

Colourization of greyscale images or movies is not a new concept in itself; it has been around since
at least the start of the 18th century, when filmmaker Georges Mélies famously hand-coloured some
of his movies, with the help of a studio and over 200 people Today, colourization is not done by
hand-painting directly on film, but can instead be performed through the use of neural networks
that rely on object and texture detection from greyscale images. The goal of such a network is not
necessarily to return the original colour that would have been visible in the ground-truth image, but
rather to return a colour that may look plausible to a human observer. It has to do with the fact that
there is rarely an explicit mapping between colour and texture applicable to all images.

The goal of this project is to train two identical networks, with different output layer and
loss function approaches. One network will be trained by directly mapping a greyscale pixel to
the corresponding colour trough regression while the other network will be trained by classifying
the colour of a pixel to a set number of possible colours. The networks will be trained on roughly
the same amount of data, and once finalized, will be evaluated by the subjective quality of the
colourization. The idea is that this will give us insight into how well a regression-based network
compares to a classification-based network in the task of image colourization.

2 Related work

In the past few years, there have been numerous papers published on the topic of image colourization
through the use of deep learning. Colorful Image Colorization by Zhang et al. [7]], describes the
process to divide the colourspace into evenly sized buckets that transform the image colourization
problem from a regression problem to a classification problem.

The primary source of inspiration for the network architecture in this paper is U-Net: Con-
volutional Networks for Biomedical Image Segmentation [4] by Ronneberger et al. They proposed a

"https://wfpp.columbia.edu/essay/french-film-colorists/

Project report for DD2424

https://wfpp.columbia.edu/essay/french-film-colorists/

modified autoencoder network with sparse connections between same-sized layers that perform well
on feature extraction tasks.

Furthermore, a paper from Stanford University, ColorUNet: A Convolutional Classification
Approach to Colorization, describes an approach to this problem via a deep convolutional neural
network using classification. One of their most significant findings is the fact that the colour bucket
plays a significant role in the accuracy of the model, and that picking suitable buckets for the training
data is essential [[1]].

3 Background

3.1 Tiny-Imagenet

ImageNet is a large-scale hierarchical image database hosted by the vision lab at Stanford University.
It is comprised of hundreds of thousands of images displaying each noun currently available in
WordNet [2]. The resolution of the images is 256x256 pixels, which is considerably higher than the
CIFAR-10 dataset. There are versions of ImageNet referred to as Tiny-Imagenet, that are already
down-scaled to the resolutions 64x64 and 32x32 [6]. In this project, a 64x64 version of ImageNet has
been used.

3.2 Network Architecture
3.2.1 Cross-channel Encoder

The Cross-channel Encoder is a neural network architecture proposed in Colorful Image Colorization
by Zhang et al. [7]. The network takes a greyscale image as input in the form of 256x256x1 and
outputs two colour channels A & B in the form of 224x224x2.

The network shares a resemblance with an Auto-encoder, in that it constricts the input down to a
smaller size through several convolutional neural network layers. After which the network enlarges
the input back to the desired output size through a similar process of expansion. The network
is implemented using stacked convolutional layers with ReLu activation, and downsampling is
performed by a 2x2 stride, on the last convolutional layer of each group.

3.2.2 U-Net

The U-Net was developed for biomedical image segmentation in 2015 [4] by Ronneberger et al. This
implementation also follows the typical layout of an autoencoder network with a constriction and
an expansion of data. The network is implemented with stacked convolutional layers with ReLU
activation, grouped with a max-pooling layer with a stride of 2 that handles the downsampling.
The expansion of the encoded data is handled by repeated upsampling combined with stacked
convolutional layers.

The big difference between a U-Net and an autoencoder is that for each stacked convolu-
tional layer group in the constriction phase, the output is sent both to the downsampled layer below
it, but also transferred across the network to the corresponding layer in the expansion phase. This
results in that additional extracted features available in each layer of the constriction phase are
being used as input to the matching layer in the expansion phase. During the expansion phase, the
network will then combine information from the corresponding layer in the constriction phase with
the information from the layer below as it expands. This concatenation creates a better prediction by
using all data available at that resolution size. Further, it is important to mention that dropout and
batch normalization are utilized throughout the entire network to prevent overfitting.

3.3 Image Representation

The Tiny-ImageNet dataset represents images in the RGB colour space. In the subject of image
colourization, it is very common to use the CIELAB colour space [} 7], which is composed of the
L channel which is the lightness where 0 indicates black and 100 indicates white. The two other
channels A and B contain information about the colour of the image. This makes it easier to divide

the image into inputs (L channel) and targets (AB channels) for training. It has been shown that the
CIELAB colour space is advantageous to use for colourization purposes [3].

3.4 Colourization as a Regression Problem

A relatively straight forward approach to the image colourization problem is with regression. Each
image is converted to the CIELAB colour space, and the network is trained using the greyscale
channel L as input. The network then outputs a prediction of the colour channels A & B. This
type of network can be trained using a loss function such as Mean Squared Error. This approach is
less demanding in terms of implementation compared to some other methods. However, there are
drawbacks due to the nature of the loss function solely being based around the distance between the
prediction value and the ground truth; these models typically favour more conservative guesses [} [7].
The result of this is that the colourized images tend to have "washed out" colours similar to that of
"sepia".

3.5 Colourization as a Classification Problem

When considering the drawbacks of image colourization with regression, there is the option to
transform the problem to a classification problem [[1,[7]. Image colourization by classification enables
several methods to be applied that would steer the model away from picking "washed-out" colours.

The core idea of this approach is to divide the colour space into a finite number of buckets,
thus creating discrete steps in colour picking. Zhang et al. describe a method to weight the colour
buckets based on the frequency of the colour in the training dataset. By assigning a higher weight to
uncommon colours, the network is more prone to produce colourful images. A post-processing step
is added to control the intensity of the colours referred to as the temperature. More about the effect of
this variable will be discussed in sections E.2.T]and [5.4]

4 Methodology

4.1 Network Architecture

We initially constructed a network with a similar structure to that which was proposed by Zhang et
al. This network ended up containing around 33 million parameters. A network of this size would
require much time, resources, and a large dataset to properly train. After some experimentation by
training the network, the decision was made to instead go with a smaller network model.

We decided to implement and perform the experiments on a downscaled version of the U-Net.
Compared the Cross-channel Encoder described by Zhang et al. the U-Net has approximately 3.5
million trainable parameters, which is more suitable for our constraints in time and resources. The
exact architecture we used during the experiments is detailed in table [T}

4.2 Two approaches to the same problem

Our implementation of the regression-based image colourization is mostly similar to that which
is described in section [3.4] The network’s input layer consists of a 64x64x1 input channel which
represents the greyscale version of the image. The output of the network is a 64x64x2 representation
of the colour channels A & B, according to CIELAB colour representation. We then used Mean
squared error to calculate the loss between each pixel value from our predicted image to the ground
truth image.

Our classification based image colourization approach was primarily inspired by Colorful Image
Colorization by Zhang et al. [7]]. We divided our colour space into 313 different buckets, where each
corresponds to a particular colour. Furthermore, this allowed us to assign a weight to each colour
bucket, based on how often that particular bucket appears in the training data. The weights of each
bucket thereby correspond to the rarity of that colour in the training dataset. An image representation
of the colour buckets can be found in figure We had to modify the last layer of the network
to output 64x64x313 with a softmax activation function. This means that each pixel will have a
probability distribution of possible buckets from which the colour will be picked. The weight w of

Layer X C
Input 64x64 1

72]
)
=

=
Z
Q
=]

Convl_1 64x64 32 1 02 - -
Convl_2 64x64 32 1 - - -
MaxPool_1 32x32 32 - - Yes -
Conv2_1 32x32 64 1 02 - -
Conv2_2 32x32 64 1 - - -
MaxPool_2 16x16 64 - - Yes -
Conv3_1 16x16 128 1 02 - -
Conv3_2 16x16 128 1 - - -
MaxPool_3 8x8 128 - - Yes -
Conv4_1 8x8 256 1 02 - -
Convd_2 8x8 256 1 - Yes -
UpSample 16x16 256 2 - - -
Concatenate 16x16 384 - - - Conv3_2
Conv5_1 16x16 128 1 0.2 - -
Conv5_2 16x16 128 1 - Yes -
UpSample 32x32 128 2 - - -
Concatenate 32x32 192 - - - Conv2_2
Conv6_1 32x32 64 1 02 - -
Conv6_2 32x32 64 1 - Yes -
UpSample 64x64 64 2 - - -
Concatenate 64x64 96 - - Convl_2

Conv7_1 64x64 32
Conv7_2 64x64 32
Output 64x64 2/313 1 - - -
Table 1: U-Net network architecture used for both regression and classification.
X dimensions of output; C number of channels of output; S stride; Dr dropout after layer;
BN whether BatchNormalization layer was used after layer; Co layer concatenated with
the UpSample layer on the row before it

—_—
1
1
1

each colour bucket is retrieved using the following formula:

Y \-a
w=((1-vyp+=)
(@=7p+3)
Where p is the probability of a specific bucket, @) is the number of colour buckets, and o & y are
variables that control how much the final probability will be reweighed.

4.2.1 Annealed Mean

Once our classifier has output a probability vector of possible buckets to pick a colour from,
the decision has to be made on how to decide which colour to pick. One technique of doing
this would be to take the mode (or max argument) of the probability distribution. This can
lead to very extreme colour choices, for example, if a shade pink has the largest probability,
but there exists a range of 3 different greens that together have a higher probability, the model
would still pick pink. A way of solving this is to take the mean colour based on the probabil-
ity distribution; however, doing this is largely equivalent to how the regression model chooses colours.

To solve this we used what Zhang et al. refers to as taking the Annealed Mean of the
probability distribution [7]]:

exp(log(z)/T)
> exp(log(zy)/T)

This introduces the temperature term T. As 7" — 0 the model will pick colours based on the mode
of the probability distribution Z leading to more extreme colour choices. As 7' — 1 the model
will move towards taking the mean colour of Z leading to more washed-out colours. Tuning the
temperature factor will hopefully allow us to get the best of both worlds.

fr(Z) =

Gamma0.5 Alpha:1.0

1049 Loas
0958 0358
0867 0867
orre 0776
0685
05%
0503
0412

0321

oses
059
0503
0412
0321
0230
0139
0048

0230
0139
0048
0043 008
0134 Co1se
0225 o22s
0316 o316
~0.407 o407
0498
0589
05680

-0

0498
0589
0680
—0771
0862 osez

0953 0953

Loas 1044

113
1136
71.136.040.953 56D, 770,550 559,450 260,320,228, 130 04G048 138.230 32 D.412 509 599.669.776.86D.958. 049 3 3% 090,550 5e0 770 £50.559.950 760 520 720,130 0AG045.138 290 20410 500 590 895 170 S50 5e2 048

(a) Unweighted Configuration (b) Weighted Configuration

Gamma:0.7 Alpha:1.1 Gamma:0.5 Alpha:1.5

1049 1049

0958 0958

0867 0867 +

0776 0776 +

osss osss +

0ses 0504 - -

0503 0503 + +

0a12 0a12 + -

03z 0321 +* +

0230 0230 * +

0139 0139 A d *

0048 0048 * *+
—0.043 —0.043 A d +
013 013 + + .
—0225 —0225 4 *
—0316 —0316 + 4
0407 0407 + 4
0438 0438 + .
0589 0589 + .
0580 0580 + .
o o ..
—0.862 —0.862 4
0353 0353 +
1044 1044

1136 1136

1 136 540 552 560 770 50 558 490 460 520.720.130.040048 139 130 32D 412 500 500 009 176.05D.950 049 ~1.134.040.952 55D 770 650 569 450,500 330 229, 130 043048 138 230 12041050355 665 77686 958 043

(c) Weighted Configuration (d) Weighted Configuration

Figure 1: Colour bucket with Different Weights

4.3 Data

We decided to use a 50000 sample subset of the Tiny-ImageNet 64x64 dataset for training the
regression-based networks. The considerably smaller dataset was chosen due to limited computational
resources and time constraints. Unfortunately, the classification target images are of size 64x64x313
and took up an excess of 200GB in space. This lead to the decision to reduce the amount of training
data, which means that the training set of the regression model contained 50000 images while the
training set for the classification model contained 30000 images.

When dealing with large amounts of training data, it is common that the RAM is a bottleneck during
training. To counteract this an input pipeline was built using the Dataset API provided by TensorFlow.
The dataset was divided into files containing 128 serialized images, to speed up reading the data. This
improved the training speed of the model considerably.

5 Experiments

The selection of the testing images was conducted by randomly sampling a test set of images never
before seen by any of the models.

5.1 Initial experiments

In the initial experiments, we trained a smaller autoencoder network with regression on the CIFAR-10
dataset. These experiments were conducted to among other things to test functions related to data
handling such as:

e RGB to CIELAB conversion and vice versa.

Figure 2: CIFAR-10: Greyscale, Prediction, Ground Truth

e Pre-loading data into the Tensorflow Record format for faster training and processing.

We also trained a small version of the final U-Net on 10 CIFAR images to see if the network converged.
After confirming that these functions were working as intended, we quickly moved on to building
models using the Tiny-ImageNet dataset for training & validation and the full-sized U-Net. The
results can be seen in figure 2]

(a) Greyscale (b) SGD Prediction (c) Adam Prediction (d) Ground Truth

Figure 3: Comparison of SGD and Adam Optimization Function with Regression

5.2 Regression: Choice of Optimization Function

In this experiment, we compare the performance of two different optimization functions - Stochastic
gradient descent (SGD) and Adaptive Moment Estimation (Adam). SGD is an optimizer similar

to regular gradient descent but is much more efficient by performing parameter updates for each
training example instead of the whole dataset. Adam is a more modern optimizer that has been
proven to work well for deep learning [3].

The experiment was conducted by training two different networks sharing the same design,
except for the optimization function, where one network utilized SGD, and the other Adam. The
training was conducted on 50000 samples and using a batch size of 64, for 55 epochs.

The result of the experiment can be seen in figure 3] By qualitative comparison of ran-
domly selected images from the test set, we can conclude that Adam outperforms SGD in this
experiment.

5.3 Bucketed Colour Weight Comparison

To evaluate how the weight of bucketed colours affect the result, we designed an experiment
where we trained four models with four different colour bucket weight configurations, that are
visualized in figure[I] There is one that is unweighted/uniformly weighted, and three different weight
configurations with an increasing discrepancy between common and uncommon buckets.

The results of the experiment are shown in figure f] which displays three pictures from the
test set. From these images, we can observe that the colouring trends towards less defensive colouring
as we let the weights go towards more extreme values. Subjectively we find that an alpha value of 1.1
gives the best results in this experiment.

(a) Greyscale (b) Unweighted (c) alpha=1.0 (d) alpha=1.1 (e) alpha=1.5 (f) Ground Truth

Figure 4: Comparison of Color Weight Configurations in Classification

5.4 Temperature

We experimented with the temperature variable discussed in section[d.2.1| by linearly incrementing it
from T'— O0to T — 1. In figure[3] the effect of the temperature variable can be seen. At very low
temperatures, the colour separation is more distinct, just as anticipated. At high temperatures, the
colours start to become "washed-out". A good value for the temperature seems to be 0.23 < T' < 0.40
just as Zhang et al. found [7]. The model used in this experiment was the one from figure Ad] but
trained for a total of 50 epochs.

T=0.03 T=0.23 T=0.43 T=0.63 T=0.83

Figure 5: Effect of the Temperature Variable

5.5 Regression vs Classification

We compared the best regression model with the best classification model as a final experiment. The
images in figure [f]display the results. While regression produces the most plausible colours, they are
rather "washed-out" as seen in the previous experiments. Classification, on the other hand, produced
more vibrant results but with a greater deal of miscolouring. An example of this can be seen in the
dog image where the water and sky is a shade of yellow.

6 Discussion

6.1 Optimization Functions

Based on the results we have seen from the optimizer experiment, we can conclude that the choice of
optimizer has a significant impact on how long it takes to train a model and what the final results
will be. The SGD model ended up performing a lot worse than the ADAM optimizer when trained
for the same amount of epochs and on the same data. If the SGD model had been trained for a more
extended period of time, it is possible it could have produced similar results. Other factors that could
have impacted this is the choice of the network model, choice of the loss function, dataset, amongst
other things. Nevertheless, on this type of problem, the ADAM optimizer seemed vastly superior
with our model.

6.2 Training Data

We trained our models with a relatively small dataset of 50000, and 30000, images respectively.
These datasets also contained a vast range of different motives. This, in turn, leads to that our models
(some more successful than others) were generally able to learn patterns such as grass, sea and the
sky, but struggled with more specific patterns such as colours of objects or animals. If we had chosen
to either include a larger dataset or to limit the dataset to for example landscape images, we could
have potentially improved our results within those specific domains.

Another factor that may have impacted the results of our experiments is the chosen resolu-
tion. The previous works that inspired our models have typically used the full 256x256 resolution of
Imagenet. Our smaller resolution of 64x64 may have made it harder for the network to properly learn
distinct patterns between objects in images, for example.

However, using a larger dataset or larger image resolution would have required more com-
putational resources that were not available to us. Despite this, given the computational and time
limitations, we are still satisfied with the results that our models were able to produce.

(a) Greyscale (b) Classification (c) Regression (d) Ground Truth

Figure 6: Comparison of Classification and Regression on Test Images

6.3 Network Architecture

Despite the somewhat successful colourization models, we think that the limited size of our U-Net
implementation could have hindered further improvement given a more extended training duration.
Had we instead opted to implement the Cross-channel Encoder or the full-sized U-net, the results

could have possibly turned out better. However, these larger networks would depend on both having
access to more computational resources and a larger dataset in order to be able to produce any
meaningful results.

6.4 Tuning Variables

Our experiments on tuning temperature values & weight calculation show that tuning these hyperpa-
rameters can significantly impact the final results of a given classification model. To further improve
the results of the model, a more thorough grid search could be conducted in order to fine-tune the
hyperparameters further.

References

[1] Vincent Billaut, Matthieu Rochemonteix, and Marc Thibault. Colorunet: A convolutional
classifcation approach to colorization. Master’s thesis, Stanford University, 6 2018.

[2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

[3] Shreyank N Gowda and Chun Yuan. Colornet: Investigating the importance of color spaces for
image classification. In Asian Conference on Computer Vision, pages 581-596. Springer, 2018.

[4] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. CoRR, abs/1505.04597, 2015.

[5] Sebastian Ruder. An overview of gradient descent optimization algorithms. CoRR,
abs/1609.04747, 2016.

[6] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Downsampled imagenet
64x64.

[7] Richard Zhang, Phillip Isola, and Alexei A. Efros. Colorful image colorization. CoRR,
abs/1603.08511, 2016.

10

	Introduction
	Related work
	Background
	Tiny-Imagenet
	Network Architecture
	Cross-channel Encoder
	U-Net

	Image Representation
	Colourization as a Regression Problem
	Colourization as a Classification Problem

	Methodology
	Network Architecture
	Two approaches to the same problem
	Annealed Mean

	Data

	Experiments
	Initial experiments
	Regression: Choice of Optimization Function
	Bucketed Colour Weight Comparison
	Temperature
	Regression vs Classification

	Discussion
	Optimization Functions
	Training Data
	Network Architecture
	Tuning Variables

