
Concurrent Programming Project:

N-Body Simulation

Erik B̊avenstrand
KTH - Royal Institute of Technology

March 2019

1 Introduction

An N-Body simulation is the simulation of dynamical par-
ticles or bodies, under the influence of each other’s gravity.
It has applications in simulations from earth-moon-sun sys-
tems to understanding the large-scale structure of the uni-
verse.

2 Aim

The aim of this project is to create four versions of N-Body
simulation programs and evaluate them against each-other.
The first one is a sequential brute-force method with O(n2)
time complexity where n is the amount of bodies to sim-
ulate. The second one is a parallel implementation of the
same brute-force method. The third version is the Barnes-
hut approximation method using quad-trees and the last
one is a parallel implementation of Barnes-hut. The input
values for the programs are mostly the same and consisting
of, number of bodies and number of simulation iterations.
Number of threads and the length of what is considered
far away in Barnes-hut methods are also some values that
should be send as arguments.

3 Software and computing plat-
forms

All four programs are written in C and the parallel imple-
mentations are using Pthreads. The testing was done on a
2018 MacBook Pro 2,3 GHz intel core i5 quad-core proces-
sor and 8 GB RAM on macOS Mojave. Since the program
only has Pthreads as its only dependency it should run com-
pletely fine on a UNIX machine.

4 Design and implementation

This section of the report will focus on explaining the four
different implementations of the simulation in the order they
were presented in section 2. The versions in sections 4.2
and 4.3 were written using the pseudocode provided in the
project description while the two latter versions were only
described in Section 11.2.4 (page 569) of the G.Andrews
textbook ”Foundations of Multithreaded, Parallel, and Dis-
tributed Programming”.

4.1 Sequential Brute-Force

This is the most straight forward approach of N-Body sim-
ulation, but at the same time it is also completely useless at
computing a large number of bodies. The main loop consists
of a calculation of forces that, for each body, calculates the
forces that it is affected by and the effect it has on all the
other bodies. This has O(n2) in time complexity. When all
the forces have been calculated the bodies has to be moved
according to the forces. This is easily done by iterating all
bodies and moving them with a O(n) time complexity. In
total this algorithm has O(n2) in time complexity since the
calculation of forces is the bottleneck.

4.2 Parallel Brute-Force

Parallelizing the brute-force algorithm is straight forward
since we can have a shared array of forces for each thread.
The calculation of forces is done with threads for each body
with id: thread id + (num threads ∗ i). This means that
the workload is almost perfectly divided among the avail-
able threads. The forces on and by the body is calculated
and placed in the array of forces for each thread. When all
threads are finished calculating forces they move on to the
movement of bodies. The division of bodies is the same as
the calculation of forces. For each body, the array of forces
for each thread is summarized to find the sum of forces that
the body is affected by and then moved correspondingly.

1



Figure 1: Quadtree division into sections 0-15

4.3 Sequential Barnes-Hut

The Barnes-hut algorithm is based on the fact that clusters
of bodies far away can be seen as a large body with the
mass of all bodies combined at the center of mass for the
cluster. A quad-tree is used for dividing a node into four
child quadrants. The data structure only allows one body
to occupy the same node at a time so when another body is
inside the same node, it is divided into four child quadrants
and the bodies are placed in their corresponding quadrant.

The first step in the main loop is to construct the quad
tree by adding all the bodies to it. There is a simple loop
that iterates all the bodies and adds them in O(n) time com-
plexity. After the tree is created, all the waste nodes are
cleared form it. This is done by checking if a node contains
bodies, and if not, all the child nodes are freed from memory
by using free. Next, the centers of masses are calculated by

recursively calculating the center of mass for the child nodes
and them summing them to find the center of mass for the
root node. The calculation of forces is basically the same
except that if a body is sufficiently far away from a node in
the tree the force is calculated from the center of mass and
mass of the node instead of its containing bodies. This is
done in O(n ∗ log(n)) time complexity. The movement of
bodies is done the same way as in previous versions except
that if a body is far away of the workspace it is simply left
alone since the forces it is involved in is so small. This is
done with a simple loop that iterates the bodies in O(n)
time complexity. The final step of the main loop in the
sequential Barnes hut is the recursive tree traversal that
sets the nodes mass to 0 and the hasBody flag to false. This
is to allow the tree to be constructed again with the same
heap address without unnecessary malloc and free system
calls. This is why the waste nodes are removed after the
tree is created since some of the nodes are probably empty.

4.4 Parallel Barnes-Hut

Intuitively it seems like the parallelization of the Barnes-hut
is as simple as the brute-force, but that is not the case. To
really parallelize the Barnes-hut, several threads has to be
allowed to access the tree at the same time. To achieve this
the tree is initialized to the third level before the main loop
starts. Since each node has four children, this means that
there are 16 child nodes when the initialization is complete.
The implementation therefore has a limit to 16 threads in
the tree at once. This can easily be increased to the next
level which will allow 16 ∗ 4 = 64 threads at once inside the
tree. Each of these 16 child nodes are named sections 0−15
and can bee seen in figure 1. The assignment of sections
to threads is done in the same way bodies are assigned to
threads in previous versions. This will hopefully balance the
workload, but there are some issues that will be brought up
in section 5. Thread number 0 is seen as leader and is there-
fore tasked with special instructions. Before the main loop

is started, thread 0 initializes the tree and all other threads
are waiting for its completion inside the main loop. Once all
threads are ready, the construction of the tree is beginning.
Each thread iterates all the bodies and checks if the body
is located within any of its sections. If that is the case the
thread adds the body to the section. When all threads are
done, the next step is removing waste nodes. All threads
loop the sections and if the thread is assigned to that section
it removes the waste nodes of that section. Once all threads
are complete with that, thread 0 summaries the weights
from all 16 sections to the two layers above. Thread 0 also
calculates the center of mass for all nodes directly after this.
The forces are then calculated in parallel by only calculat-
ing the forces on bodies that are assigned to that thread
by the formula thread id + (num threads ∗ i). The same
thing is then done to move the bodies in parallel. The only
thing left is the recursive traversal of the tree and setting
the nodes mass to 0 and the hasBody flag to false. This

2



is done in parallel the same way that waste node removal
is, by only processing the sections that are assigned to that
specific thread. Thread 0 then takes care of the two upper
levels since they also have to be reset.

5 Performance Evaluation

In the project description it said that the performance was
to be evaluated using 120, 180 and 240 bodies in such a way
that 120 bodies took 15 seconds to compute. This works
well with the first two versions of the program since the al-
gorithms are straight forward to parallelize. However, in the
last two version the overhead of calculation was too much
to see any reliable results. Therefore, the tests were modi-
fied to better test the performance of the four versions. The
different tests can be seen in table 1 was run in the ranges
found in the table. Each individual run of the programs was
running five times and averaged.

5.1 Sequential Brute-Force

It is known that the algorithm has O(n2) in time complex-
ity beforehand. We can see that in figure 2 the performance
seems to trend towards just that. The y axis displays the
execution time while the x axis displays the number of bod-
ies.

5.2 Parallel Brute-Force

Each of the lines displayed in figure 3 correspond to a spe-
cific number of bodies. The y axis displays execution time
while the x axis displays the number of threads used. It
is evident in the figure that more threads equal speedup of
the simulation. However, it seems like the speedup is de-
caying for each new thread that is added. This might be
because the overhead of having threads created and sharing
data structures is too costly and the calculation is becoming
too fine grained.

5.3 Sequential Barnes-Hut

It is known that Barnes-hut has n ∗ log(n) in time complex-
ity, and it is what can be observed in figure 5. The increase
in execution time is almost linear. The y axis displays the
execution time while the x axis displays the number of bod-
ies.

5.4 Parallel Barnes-Hut

Each of the lines displayed in figure ?? correspond to a spe-
cific number of bodies. The y axis displays the execution
time while the x axis displays the number of threads used.
The speedup of this implementation is not as drastic as the
parallel brute-force. This can be because of the need of
syscalls which cannot be done in parallel. It is because of
that reason that the structure is preserved during the main
loop. Another reason for the speedup is that some things
that currently are in parallel could be faster to do in se-
quential fashion. One problem with this implementation of
parallelization is that the workload is not evenly distributed.
If all bodies are in the upper right quadrant in the top left
corner, the thread associated with that section will do all the
work whilst the rest of the threads just idle. This could be
prevented by doing division of workspace based on number
of bodies in clusters instead of quadrants.

6 Conclusions

The implementation and parallelization of the brute-force
algorithm for N-Body simulation is really easy and straight
forward while the Barnes-hut is way more complex. The
Barnes-hut reached a significant speedup thanks to the par-
allelization of the construction of the tree as it is the costliest
operation in the main loop. One interesting thing was that
without the syscalls the parallel speedup of the Barnes-Hut
was significantly more.

Version Bodies Bodies Increment Iterations Threads

1 250-500 50 110000 1
2 250-500 50 110000 1-4
3 80000-230000 30000 100 1
4 80000-230000 30000 100 1-4

Table 1: Performance tests

3



Figure 2: Performance of sequential brute-force

4



Figure 3: Performance of parallel brute-force

5



Figure 4: Performance of sequential Barnes-hut

6



Figure 5: Performance of parallel Barnes-hut

7


