
INOM EXAMENSARBETE TEKNIK,
GRUNDNIVÅ, 15 HP

, STOCKHOLM SVERIGE 2019

Performance Evaluation of
Imitation Learning Algorithms with
Human Experts

ERIK BÅVENSTRAND

JAKOB BERGGREN

KTH
SKOLAN FÖR ELEKTROTEKNIK OCH DATAVETENSKAP

Abstract

The purpose of this thesis was to compare the performance of three different

imitation learning algorithms with human experts, with limited expert time.

The central question was, ”How should one implement imitation learning in a

simulated car racing environment, using human experts, to achieve the best

performance when access to the experts is limited?”. We limited the work to only

consider the three algorithms Behavior Cloning, DAGGER, and HG-DAGGER

and limited the implementation to the car racing simulator TORCS. The agents

consisted of the same type of feedforward neural network that utilized sensor

data provided by TORCS. Through comparison in the performance of the different

algorithms on a different amount of expert time, we can conclude that HG-

DAGGER performed the best. In this case, performance is regarded as a distance

covered given set time. Its performance also seemed to scalewell withmore expert

time, which the others did not. This result confirmed previously published results

when comparing these algorithms.

Keywords

Imitation Learning, DAGGER, HG-DAGGER, Behavior Cloning, Machine

Learning, TORCS

i

Abstract

Måletmed detta examensarbete var att jämföra prestandan av tre olika algoritmer

inom området imitationinlärning med mänskliga experter, där experttiden

är begränsad. Arbetets frågeställning var, ”Hur ska man implementera

imitationsinlärning i en bilsimulator, för att få bäst prestanda, med mänskliga

experter där experttiden är begränsad?”. Vi begränsade arbetet till att endast

omfatta de tre algoritmerna, Behavior Cloning, DAGGER och HG-DAGGER,

och begränsade implementationsmiljön till bilsimulatorn TORCS. Alla agenterna

bestod av samma sorts feedforward neuralt nätverk som använde sig av

sensordata frånTROCS.Genom jämförelse i prestandapå olikamängder experttid

kan vi dra slutsatsen att HG-DAGGER gav bäst resultat. I detta fall motsvarar

prestanda körsträcka, givet en viss tid. Dess prestanda verkar även utvecklas väl

med ytterligare experttid, vilket de övriga inte gjorde. Detta resultat bekräftar

tidigare publicerade resultat om jämförelse av de tre olika algoritmerna.

Nyckelord

Imitationsinlärning, DAGGER, HG-DAGGER, Behavior Cloning,

Maskininlärning, TORCS

ii

Acknowledgements

There are a few people we would like to thank for their support of this thesis.

We would like to sincerely thank our supervisor Mika Cohen, both for his time

and effort put into this thesis. also, we would like to thank our examiner Anders

Västberg for his guidance in this thesis. A special thank you to BernhardWymann

for his immense work in developing TORCS.

iii

Authors

Erik Båvenstrand erikbav@kth.se
Jakob Berggren jaberggr@kth.se
Information and Communication Technology
KTH Royal Institute of Technology

Place for Project

Stockholm, Sweden

Examiner

Anders Västberg
KTH Royal Institute of Technology

Supervisor

Mika Cohen
KTH Royal Institute of Technology

Contents

1 Introduction 1
1.1 Background . 1

1.2 Problem . 2

1.3 Purpose . 2

1.4 Goal . 2

1.5 Benefits, Ethics and Sustainability 3

1.6 Methodology . 3

1.7 Stakeholders . 3

1.8 Delimitations . 4

1.9 Outline . 4

2 Background 5
2.1 Artificial Neural Network . 5

2.2 Imitation Learning . 10

2.3 Behavior Cloning . 11

2.4 DAGGER . 12

2.5 HG-DAGGER . 12

2.6 TORCS Environment . 14

2.7 Related Work . 15

3 Method 17
3.1 Implementation . 17

3.2 Testing . 17

3.3 Research Paradigm . 18

4 Implementation 20
4.1 Agent . 20

4.2 Tracks . 20

4.3 Automatic Transmission . 23

4.4 Pre-Training . 23

4.5 Expert Time . 24

4.6 Behavior Cloning . 24

4.7 DAGGER . 25

v

4.8 HG-DAGGER . 25

4.9 Validation . 25

5 Result 26
5.1 Tables . 26

5.2 Graphs . 26

5.3 Observations . 31

6 Conclusions 32
6.1 Conclusion . 32

6.2 Discussion . 33

6.3 Future Work . 36

References 37

vi

Glossary

AI Artificial Intelligence.

ANN Artificial Neural Network.

BHC Behavior Cloning.

DAGGER Dataset Aggregation.

FNN Feedforward Neural Network.

HG-DAGGER Human-Gated Dataset Aggregation.

IL Imitation Learning.

ML Machine Learning.

MSE Mean Squared Error.

RL Reinforcement Learning.

RMSE Root Mean Squared Error.

TORCS The Open Racing Car Simulator.

vii

1 Introduction

Racing simulation presents a multitude of different challenges for machine

learning (ML). The most prominent one being the imitation of human intuition

and in turn, human intelligence. The use of racing simulations can be compared

with the way board games have been used to research artificial intelligence (AI),

with the obvious example of deepMind and their alphaZero in chess [21]. In

comparison to board games, the use of a fast-paced racing simulation is a definite

step towards solving more complex problems in the ML stratosphere, while

keeping the decision time to a minimum. The complexity often comes in the

form of non-determinism, large dimensional space-state, and a requirement of

fast decision making.

1.1 Background

One way to learn is through imitation of actions by someone else. What might not

be as well known is that the principle of imitation learning (IL) is also applicable

to computers, and more specifically artificial neural networks (ANN). It is not

surprising when taken into consideration the close relation between ANN and

biological neural networks [20]. One convenient property of IL is that it can be

performed on recorded data which reduces the need for live training.

The IL technique to be explored is DAGGER and was first introduced in a paper

from 2011 [18]. It can be briefly explained as an iterative algorithm that makes

use of an expert policy to record a dataset. The dataset is then used for training

a new policy made to mimic the expert policy. For the next iteration, the newly

recorded dataset is aggregated to the previous set of data before training the new

policy.

The Open Racing Car Simulator (TORCS) has proven to be a good choice when

researching AI in driving environments [25]. TORCS will be the simulator of

choice in this thesis.

1

1.2 Problem

Racing simulation is a problem with considerable complexity and has a close

connection to the paradigm shift of self-driving cars in the car industry. The grand

problem can, therefore, be formulated as follows:

How should self-driving cars be implemented to achieve the best possible

performance?

However, due to the time constraints of this thesis, this problem is far too broad

and open for us to answer and will, therefore, be narrowed down to something

more tangible. IL could be a solution to the complex problem presented above.

Therefore, we identify the problem of this report to be comparative, where we

will compare the performance of different IL algorithms. More specifically, the

viability of behaviour cloning (BHC) [1], dataset aggregation (DAGGER), and

human-gated dataset aggregation (HG-DAGGER) [9] will be evaluated, when

using a human as expert for IL in car racing simulations.

How should one implement IL in a simulated car racing environment, using

human experts, to achieve the best performance when access to the experts is

limited?

1.3 Purpose

The purpose of this thesis is to investigate three different IL algorithms

performance in a simulated car racing environment with limited access to the

expert. This is done to contribute to further development in the field of IL.

1.4 Goal

The goal is to provide scientific value by comparing the three different IL

algorithms, DAGGER, HG-DAGGER, and BHC. The comparison will be done in a

simulated racing environment, to verify previously achieved results in a different

environment. In essence, we want to create research material for future work

within IL.

2

1.5 Benefits, Ethics and Sustainability

Hopefully, this study will be useful outside of the simulator and affect the

development of autonomous driving in the real world. Given that there are

organizations such as Drive Sweden, who are backed by the Swedish government,

working on various research projects focusing on autonomous vehicles, there is an

interest of the topic at a governmental level in Sweden [22]. The argument can be

made that Sweden may directly benefit from this study. Secondary effects such as

lowered costs and emissions of transport through the development of autonomous

cars may also be relevant to consider. Especially since Greenblatt et al. forecasts

the emissions of greenhouse gases and energy use to be lowered by asmuch as 80%

through the use of autonomous vehicles [5]. This gives reason to assume that the

work conducted in this thesismay have an indirect positive effect on sustainability

and help achieve environmental goals set out by, for example, the EU.

1.6 Methodology

The research methodology employed in this thesis is Experimental research,

which is quantitative. It is the study of cause and effect and is conducted

by manipulating one variable while keeping the other variables constant while

observing for differences in the result [6]. This method is commonly used when

analyzing performance in a system and is, therefore, a good fit for this thesis

since the different IL algorithms are to be compared in performance when given

different amounts of expert time.

1.7 Stakeholders

The main stakeholder of this project is Mika Cohen, a researcher at the Swedish

Defense Research Agency (FOI), and our supervisor for this project. The project

is conducted upon his appointment.

3

1.8 Delimitations

Concerning the goal of this thesis, work will be limited to only regard BHC,

DAGGER, and HG-DAGGER as the algorithms of interest. Furthermore, the

environment in which the different AI’s will be deployed will be the car racing

simulator TORCS. Firstly, because it widely used for ML research in race driving,

some examples of this are related works presented in section 1.1, and secondly for

being open-source [25]. Further, andmore specific delimitations of the thesis will

be presented in section 3.

1.9 Outline

Section 2 will in depth present relevant theoretical background information

about ANN, IL and the algorithms, BHC, DAGGER and HG-DAGGER. It will

also describe the environment (TORCS) of the implementation. Section 3

presents a thorough explanation of the methodology used and the reasoning

behind it. Section 4 will provide the reader with a practical description of the

implementation of the method described in the previous chapter. Section 5

presents the results achieved by the thesis work. Section 6 presents the conclusion

and provides a discussion of the conducted thesis project. Future work is also

included in that section.

4

2 Background

In this section, a detailed description of the background of the thesis is presented

together with related work. If a further understanding of the background is

desired, we kindly refer you to the original works, as cited.

2.1 Artificial Neural Network

An ANN consists of artificial neurons in layers, and acts as a framework for

different ML algorithms [8]. Every ANN needs to have an input layer of nodes

where the data is received from the environment. However, the size of this

layer is highly dependent on the application and can vary immensely. The same

principle also applies to the last layer of nodes in the ANN. The last layer of an

ANN is the output layer, which outputs the processed data to the environment.

The appearance of it is highly dependent on the environment, just as the input

layer. Between the first and last layers, there can also exist so-called hidden

layers of neurons that are not in contact with, nor visible from the outside

environment. There exist infinitely many configurations of the layers and how

they are connected, but for this thesis, only feedforward neural network (FNN)

are of interest. In a FNN, each layer receives inputs from the previous layer and

computes an output that is propagated to the next layer. A visual representation

of a FNN can be seen in Figure 2.1.

2.1.1 Artificial Neuron

The neuron is the fundamental building block for all ANNs and is in reality just

the mathematical equation 1 [3, p. 42]. For each input to the neuron, there exists

a corresponding weight that in some sense describes the importance of that input.

A bias value is added to the sum that is used to make sure that even if all the input

values to the neuron are 0, it is still going to activate. Before the neuron propagates

the value forward, an activation function is applied to the value.

Y = Σn
i=1(wi ∗ xi) + b (1)

5

Figure 2.1: An FNN.

2.1.2 Activation Function

The purpose of an activation function is to introduce non-linearity to an ANN

[27, pp.129-137]. Some examples of such functions are Sigmoid [27, pp.118] and

rectified linear unit (ReLU) [27, pp.116]. The Sigmoid activation function is a

squashing function and returns values in the range 0 to 1. It is defined in equation

2. The Sigmoid function is commonly used for binary classification problems

that require the range [0, 1]. Unfortunately, it is prone to saturation since large

input values result in values close to either 0 or 1. This slows down the learning

process since the gradient of the Sigmoid function is very small at large values. In

simple terms, the network can get stuck when training because the gradients of

the calculated values are too small.

σ(x) =
1

1 + e−x
(2)

ReLU returns values in the range [0,+∞] and is described in equation 3. The
reasoning behindReLU is that it provides a very simple nonlinear transformation.

6

It will retain positive values while discarding negative values. ReLU does not have

the same problemwith vanishing gradients as with Sigmoid. Unfortunately, it has

the property of causing neurons to die if the weight turns negative. The neuron

will most likely never be resurrected and will not provide any use to the network

anymore [27, pp.139-140].

ReLU(x) = max(0, x) (3)

2.1.3 Loss Function

A loss function is required to determine an ANNs performance by computing

the deviation of its predictions. These functions are often immediate

implementations of standard statistical functions, such as the mean squared

error (MSE) [27, p.18] shown in equation 4. The MSE is a typical function

to use for error computation. It measures the average of squared differences

between the network’s prediction and the label of the data. It has an interesting

computational characteristic. It is independent of direction due to the nature of

squaring a difference, which may be problematic if the direction of the error is

of importance. This may lead to an emphasis of larger errors and a neglection of

smaller ones.

MSE =
1

n

n∑
t=1

(yi − ŷi)
2 (4)

2.1.4 Optimization Function

The optimization function, in its most basic form, consists of maximizing or

minimizing the output in an attempt to find the optimal solution. In the case

of this thesis the function to be optimized is the loss function MSE presented

in section 2.1.3. There exists a multitude of optimization functions, however the

one of interest for this thesis is ADAM [11], displayed in equation 5. This function

uses both gradients and second moments of gradients. The parameters given are

represented as w(t) and the loss function L(t). t is the current iteration of training,

and the loss function isMSE in our case. The small constant ϵ is used to prevent

division by zero, and β is used as a forgetting factor to give a decaying effect on

7

previous gradients.

m(t+1)
w = β1m

(t+1)
w + (1− β1)(∇wL

(t))

v(t+1)
w = β2m

(t+1)
w + (1− β2)(∇wL

(t))2

m̂w =
m

(t+1)
w

1− (β1)t+1

v̂w =
v
(t+1)
w

1− (β2)t+1

w(t+1) = w(t) − η
m̂w√
v̂w + ϵ

(5)

2.1.5 Training an ANN

The previous subsections have covered the individual parts of training an ANN,

and now the full composition will be explained. The training is conducted through

a method called backpropagation. It works by computing the current error with

a loss function and calculating the changes to the ANN through an optimization

function [27, pp.176-177]. When configuring the training setup, there are a few

important variables to set. They will all affect the training and the outcome of the

trained ANN regarding stability and accuracy. The variables are batch size, the

number of epochs, and learning rate [27, pp.95-96].

Batch size is an important variable of the training and is vital for computational

feasibility when using large datasets [27, pp.431-432]. A large amount of data

poses a computational problem, due to the vast amount of calculation needed for

each epoch of training. Therefore, it is natural to process the data in batches. The

optimal size for the batches is highly subjective and should be viewed as a trade-off

between accuracy and speed.

The number of epochs usedwhen training is, as with batch sizes, highly subjective.

For each epoch, the whole dataset is trained on, which allows for more training

to be conducted without needing additional data [27, p.107]. While one would

optimally have enough data only to run one epoch, it is not feasible in practice.

A complete dataset is not practical nor necessary to achieve a somewhat optimal

result and can, therefore, be substituted by several epochs.

8

Lastly, the learning rate of the ANN has to be selected, which is a scalar to the

tweaking of the weights and biases [27, pp.422-423]. It is a trade-off of the same

character as with the batch size. A higher learning rate can increase the training

speed drastically but presents the risk of sub-optimally tweaking the ANN, by

making too large changes.

2.1.6 Selecting a Topology for an ANN

When designing an ANNmany different components need to be tweaked to fit the

problem domain. There is seldom a known optimal configuration for the specific

application at hand, and it will often require some tweaking through trial and

error, to achieve acceptable performance. This is a direct cause of the complex

environment in which ANN’s are used. However, there are a few guidelines to

follow in the design. Firstly, the number of necessary input and output neurons

should be decided. The number of input parameters can be represented as the

spatial dimensions of the ANN, while the number of output parameters is the

number of solution surfaces, per Rafiq et al [17, p. 1545]. If there are too many

neurons in the input layer, the risk of confusing the ANN runs higher while also

increasing the computational power required. Too few and the problem resolution

becomes too small for precise calculations. When designing input and output

layers, there are a few suggested ways of doing it. For example, using statistical

methods or dimensional analysis [17, p. 1545].

Themore abstract part of the architectural design of anANNare the hidden layers.

The design of the hidden layers is problem specific and dependent on the amount,

and quality of the training data. Too many neurons in the hidden layers and it

might encourage over-fitting ormodeling of the data with unnecessary complexity

[23]. One should strive for the design to be simple enough for generalization, yet

sufficiently complex for the correct modeling of the problem.

Rafiq et al. finds that some researchers use an upper bound for neurons in the

hidden layer of twice the number of input neurons [17, pp. 1546-1547]. However,

this comes with no guarantee of generalization of the network. To properly design

a hidden layer, a parametric study should be carried out by changing the design

9

gradually and observing the difference in performance until convergence is found

or a predefined threshold achieved. The unit of measure is the root mean squared

error (RMSE).

2.1.7 Keras

Keras [10] is a high-level API for neural networks built to be easy to use and

allowing for fast prototyping. It runs on top of other popular ML frameworks,

such as TensorFlow, CNTK, or Theano.

2.2 Imitation Learning

IL, or learning by demonstration as it is also known, is one ofmanyML techniques.

IL is based on the notion that there exists a learning agent and an expert that

operates in a teacher-student manner [3, Section 18]. The expert is viewed as

an oracle and the actions taken by it are regarded as optimal by the agent. Each

state is an observation of the environment and a corresponding action taken by

the expert. The goal of the agent is to learn the expert policy by minimizing the

total loss of all actions taken by the agent.

2.2.1 Agent

The learning agent is commonly implemented using an ANN. The only criteria

are that the agent can learn and to generalize the expert policy. Since the agent is

commonly an ANN, the architecture of it has to be implemented in a way that is

appropriate for the learning environment.

2.2.2 Expert

The expert in a IL setting can be any type of algorithm or entity that can make

decisions [3, Section 18.4]. Preferably, it should either be a computationally

expensive algorithm or something with inherit intuition, like a human. In basic

IL, like BHC, the dataset used for training the agent can be pre-computed. Thus,

10

allowing the dataset to be generated by exhaustive search of the state-space or

similar expensive computations. This is not the case for other forms of IL, such

as DAGGER, that requires the expert policy to make decisions in parallel with the

agent to aggregate the dataset. An advantage of using an algorithmic expert is that

the policy itself is sure about the action taken, given a certain observation of the

environment. A human might react differently depending on many factors, such

as the focus on the task or prior knowledge. This requires the agent to account for

variance in the expert actions given the same observation.

2.3 Behavior Cloning

BHC is one of the most basic forms of imitation learning. It requires only a

demonstrator or records of demonstration data, which are actions taken by the

expert and the given state in which the action was taken [3]. The algorithm

consists of two significant steps. Firstly, the datasetD is sampled from the expert

policy π∗, and secondly, the policy π̂ is trained on the datasetD.

A benefit of BHC is the simple characteristics of its implementation, as well

as its efficiency. However, its simple design does come with disadvantages.

Such a disadvantage is the lack of ability to plan and handle long term

planning [26]. These properties make BHC useful when 1-step deviations are

not critical and/or expert trajectories ”cover” the state space. The technique

is more appropriately used for classification problems, rather than sequential

decision-making problems, where the current state is dependent on previous

decisions.

Algorithm 1 BHC

1: InitializeD← ∅
2: Sample trajectories using π∗.
3: Get datasetD = {(s,π∗(s)} of visited states by π∗

4: and actions given by expert.
5: Train policy π̂ onD.
6: return π̂ on validation.

11

2.4 DAGGER

In a paper published in 2011, written by Ross et al [18], the first version of the

DAGGER algorithm was presented. It is described in pseudo-code as seen in

algorithm 2. However, a thorough explanation is necessary.

DAGGER is an iterative algorithm in the area of IL, that aims to teach an agent

the policy of the expert. D is the collected dataset which, during each iteration, is

aggregated with the newly collected dataset Di. The agent policy π̂1 is initialized

to a random policy at the start. π∗ is the expert policy and βi is the probability of

intervention by the expert. It is initialized to 1 and slowly decays towards 0 during

N iterations, where the agent is completely in charge of the decisions. At the start

of each iteration, a policy πi is created. πi is a combination of expert and agent

decisions. A sampling of new states by the policy πi is done and for each step,

the observation and the expert decision are stored in the dataset Di. The dataset

Di is then aggregated to D and the new agent policy π̂i+1 is trained on the newly

updated datasetD.

The issue that DAGGER attempts to solve is that plain IL often leads to a

compounding error in sequential decision-making problems. This is because the

previous actions affect the current state of the agent, thus affecting the actions of

the future. To counteract this, Ross et al. introduced a stochastic mixed policy πi

that gradually allows the agent to control more and more of the decisions.

The work conducted by Ross et al. regarding DAGGER is highly relevant for this

thesis since their work in formulating the algorithm sets the foundation for us to

analyze the technique in specific problem domains.

2.5 HG-DAGGER

The original DAGGER algorithm was implemented with a stochastic variable βi

which sets the amount of expert intervention for that epoch; however, this might

not be optimal when using human experts. The weighted coin toss with the

probability βi is assumed to be uniformly distributed across all steps. Because

of this, the expert will experience a form of input lag since the decisions are only

12

Algorithm 2 DAGGER

1: InitializeD← ∅.
2: Initialize π̂1 to any policy in

∏
.

3: for i = 1 to N do
4: Let πi = βiπ

∗ + (1 - βi)π̂i.
5: Sample T-step trajectories using πi.
6: Get datasetDi = {(s,π∗(s)} of visited states by πi

7: and actions given by expert.
8: Aggregate datasets: D←D ∪Di.
9: Train policy π̂i+1 onD.

10: return best π̂i on validation.

partly made by the expert. As the probability βi approaches 0, it will severely

impair the expert’s decisions negatively. Kelly et al. propose HG-DAGGER [9],

a derivative of DAGGER which is specifically developed to be used with a human

as an expert. This method of DAGGER was developed under the assumption that

better labels can be acquired if the human expert can demonstrate uninterrupted

for longer periods [9, 18]. The pseudo-code for HG-DAGGER is provided in

algorithm 3.

HG-DAGGER relies on the fact that an ensemble of independent ANNwill slightly

differ in their answers to the same question. The l2 norm of the answer’s

covariance matrix is then calculated to find a doubt value. The doubt is a value

of how much the ANNs differ in their answers to the same question. If the doubt

value is high it means that the ensemble is uncertain in their decision. This could

mean that the demonstrations provided do not cover the given state with high

doubt. Therefore, when the doubt crosses a certain threshold, the controls are

given to the expert until the expert decides to hand them back. This ensures that

the agent only is given new training data when corrections need to be made to

better imitate the expert policy.

The dataset D is initialized with the set DBC that contains demonstrations

performed by the expert. I is a list of doubt values. The algorithm is executed

for K epochs. M rollouts are executed, which each contains several timesteps

T. A timestep is a single observation of the environment with the corresponding

action. If the expert is requesting to take control of the car, the current doubt value

of the ensemble is recorded into Ij before recording the demonstrations toDj. The

13

demonstrationsDj are appended toD and the doubt values Ij are appended to I.

A doubt threshold is calculated by finding the mean of the latest 25% of all doubt

values in I. If the doubt value crosses the threshold, the control is automatically

given to the expert since the agent is indecisive. When the rollout is complete, all

the ensemble networks are trained on the same aggregated dataset D.

Algorithm 3 HG-DAGGER

1: procedureHG-DAGGER(πH , πN1 ,DBC)
2: D←DBC

3: I ← []
4: for epoch i = 1 toK do
5: for rollout j = 1 toM do
6: for timestep t ϵ T of rollout j do
7: if expert has control then
8: record expert labels intoDj

9: if expert is taking control then
10: record doubt into Ij
11: D←D ∪Dj

12: append Ij to I

13: train πNi+1
onD

14: T ← F (I)
15: return πNK+1

, T

2.6 TORCS Environment

TORCS is an open-source racing simulation game that is commonly used for AI

research in smart control systems for cars. It simulates the driver through a low-

level API which gives only partial access to the simulation state [25, p. 1].

The simulation engine uses discrete time, paired with simple Euler integration of

differential equations. It is developed to be simple while still handling all the basic

properties of vehicular dynamics. Some of these properties are as follows:

• Mass and rotational inertia of car components.

• Mechanical components such as differentials, suspensions, and links.

• Friction profile of tires, both static and dynamic, dependent on the profile

of the ground.

14

• Aerodynamicmodel, which includes both slip-streaming and ground effects.

While the simulation engine is running at a time discretization of 0.002s

of simulated time, the drivers only have an opportunity to interact with the

simulation every 0.02s. Thismeans that the simulation is perceived by the drivers

as it would be running at 50 frames per second, while the simulation is running

500 frames a second [25, pp. 1-2].

Total documentation of the actuators and sensors available in the TORCS

environment can be found in appendix A. The sensors available are found in the

Table A.1, and the actuators in Table A.2. This setup of sensors and actuators are

per the official rules for theworld championship inAI racing for TORCS [13].

2.7 Related Work

In this section, we will present a few related works and give a brief explanation of

why that is.

2.7.1 DAGGER

The DAGGER algorithm was introduced in a paper from 2011 [18] with the intent

to solve issues regarding IL in sequential decision-making problems, where the

future actions depend on past actions. The DAGGER algorithm attempts to solve

these issues and was tested on a driving game, similar to TORCS, with good

results. The DAGGER algorithm is one of the three algorithms compared in this

thesis.

2.7.2 HG-DAGGER

In a paper published 2019 [9], the HG-DAGGER algorithm was described as a

combination of ENSEMBLE-DAGGER and SAFE-DAGGER, to be used for ILwith

human experts. This is very relevant to this thesis as the expert is human. The

results achieved in this paper compares the algorithm to both DAGGER and BHC,

which are the three algorithms this thesis compares.

15

2.7.3 Temporal Exploration

A paper released by Heuel et al. [7] examines the domain of reinforcement

learning (RL) in the driving simulator TORCS. The approach of this thesis and

their work is similar to ours in the way that inputs to the agents are from sensors.

However, due to vast differences in implementation and underlying techniques

the results of this paper will not be comparable to the results presented in this

thesis.

2.7.4 A Human-Like TORCS Controller

Muñoz et al. presented a human-like TORCS controller in a paper from 2010

[16], where they describe the implementation of a controller and the ANN that

operates the car in great detail. Controllers that mimic humans are not the norm

and therefore this paper is relevant for the implementation of the controllers in

this thesis. The results of this paper are not comparable to the results of this thesis

due to the approach of creating a human-like TORCS controller. The human-

like TORCS controller presented in their paper consisted of several hard-coded

policies that aid the ANN in its decisions. This would create an unfair advantage

compared to the agents in this thesis.

2.7.5 Vision-Based Neural Networks for TORCS

The paper Evolving Large-Scale Neural Networks for Vision-Based TORCS, by

Koutník et al. [12] experiments with large scale neural networks to achieve good

performance with a vision-based agent in TORCS. The choice of vision-based

input sensors provides an interesting contrast to the sensors provided by TORCS.

The results of this paper cannot be compared to the results of this thesis since the

input sensors are completely different, and the agents of the paper are trained and

validated on the same track.

16

3 Method

In this section, the preliminaries for the experiment will be described as well as

the method used to answer the central question of the thesis.

3.1 Implementation

The project is entirely written in Python 3.6 [19] and is using SnakeOil [4] to

interface with the TORCS server. SnakeOil is a client interfacing with the TORCS

API through sockets. The TORCS server is a modified version of release 1.3.7,

according to the simulated car racingmanual [13] and is available for download on

GitHub [15]. The two following python libraries are also used. TensorFlow 1.12.0

[14], which contains Keras and is used to construct and run the ANN. Keras [10]

is a high-level API for neural networks built to be easy to use and allowing for fast

prototyping. It runs on top of other popular ML frameworks, such as TensorFlow,

CNTK, or Theano. Pygame 1.9.4 [2] is a free and open-source game library used

for receiving inputs from a steering wheel and pedals. The steering wheel and

pedals used are Logitech G29 Driving Force. All three algorithms used the car

car1-trb1 [24]. The ANN architecture is the same for all three algorithms and they

all have access to the same sensors and actuators.

The implementation of the three different imitation learning algorithms BHC,

DAGGER, and HG-DAGGER have been done following the original published

papers in which these algorithms were first introduced. Pseudo code of the

different algorithms can be found in sections 2.3 - 2.5.

3.2 Testing

To analyze the performance of the different algorithms, parametric analysis was

used. All parameters were kept identical across the three algorithms. The

changing parameter is expert time and it is defined as the time where the expert

is either demonstrating to or actively observing an agent. Many of the parameters

that are not explicitly defined in the different implementations were selected from

17

related works that achieved good results. Themain performancemetric evaluated

is distance covered for a given time.

When experimenting, T tracks are used to train the agent while V tracks are used

for validation and measuring the performance of the different algorithms. The

experiment is divided into X number of instances. The first instance will contain

the least amount of expert time while the last instance will contain themost. Each

instance is defined as follows: All agents will get an equal amount of pre-training

demonstration on all T training maps. This will then be followed by individual

training where all agents will be given the same amount of expert time. This will

allow for equal treatment for all techniques regarding expert time, even though

BHC is not actively using an expert. Each validation track V is run multiple times

to gather data that is not skewed by the non-determinism of TORCS.

To ensure feasibility when conducting the testing, we had to introduce some

limiting factors to the experiment. Specifically, we limited the experiment as

follows:

• Training tracks T and validation tracks V are all on tarmac.

• The agent was alone on the track during training and validation.

• Automatic transmission was used.

3.3 Research Paradigm

Quantitative research was done in the form of an experimental study. Specifically,

a parametric study [6] was conducted to answer the research question of this

thesis.

How should one implement IL in a simulated car racing environment, using

human experts, to achieve the best performance when access to the experts is

limited?

An inductive approach was taken to answer this question, which means that a

general answer for the question was induced for the question based on the limited

data collected. There are two reasons for choosing an inductive approach. Firstly,

18

the authors were not experienced enough in the field of IL to propose a relevant

hypothesis on the topic. Secondly, the feasibility of conducting this thesis with

limited time also needed to be considered, therefore an inductive approach to the

problem was considered most suitable.

19

4 Implementation

In this section, the implementation, conducted following the method from the

previous section, will be described in detail.

4.1 Agent

The agents that were trained with the three different techniques all share the

same basic ANN architecture. The input layer was decided to have 10 neurons.

Specifically, the sensors used by the neural network are the following: (i) The

speedX sensor that reads the current speed in the direction of the car. (ii) Nine of

the track sensors that measure the distance from the car to the edge of the track

along the directions {-90◦, -60◦, -30◦, -10◦, 0◦, 10◦, 30◦, 60◦, 90◦}. The distance

measuring sensors are displayed in Figure 4.1 The hidden layers consist of 256 and

128 fully connected ReLU neurons. The hidden layer architecture is inspired by a

previouswork that successfullymanaged to drive a car in TORCSwith good results

[7]. The output layer consists of two neurons with Sigmoid activation. The two

outputs control the steering and the throttle of the car. No further investigation

of the architecture was conducted due to the scope of this project.

4.2 Tracks

All tracks were selected from the available tarmac tracks in TORCS 1.3.7. In total,

15 tracks were selected. 10 of them were used for training while 5 of them were

used for validation. A diverse set of training data is required to achieve good

results in the validation set. Because of this, one might want to manually make

sure that the validation set and training set is kept diverse. However, to not induce

any unnecessary human interference to the experiment, we chose to select the sets

of maps at random. The 10 training tracks can be seen in Figure 4.2 and the 5

validation tracks can be seen in Figure 4.3.

20

Figure 4.1: The distance sensors used for input to the ANN.

21

(a) CG-Track 2 (b) Ruudskogen (c) Street 1

(d) Wheel 1 (e) Wheel 2 (f) Aalborg

(g) Brondehach (h) E-Track 2 (i) E-Track 6

(j) E-Road

Figure 4.2: Training tracks

22

(a) CG-Speedway 1 (b) CG-Track 3 (c) Corkscrew

(d) E-Track 3 (e) Forza

Figure 4.3: Validation tracks

4.3 Automatic Transmission

An automatic transmission was implemented using a deterministic gear change

policy with inspiration from an earlier work that implemented a human-like

controller for the 2010 Simulated Car Racing Championship [16]. The policy

can be found in Table 4.1, and it shows the speed or rpm of the car needed to

shift gear. For instance, if the car is currently in third gear and its rpm and

speed are 7000 and 140 respectively, it would gear up. To prevent oscillating

gear changes, a reset timer prevents the gear to be changed within 1 second of

the previous gear change. This, unfortunately, puts a limit to the gear shifting

and its aggressiveness. However, since all experiments were run using the same

transmission policy, the prerequisites are still equal for all.

4.4 Pre-Training

A dataset containing sensor observations and actuator actions by the expert was

collected and used for pre-training the agents. The dataset that contained 50

23

Table 4.1: The gear changing policy used for all agents and experts.

Current
Gear

RPM Speed km/h
Gear Up Gear Down Gear Up Gear Down

Reverse 0 - 0 -
Neutral 0 - 0 -

1 8500 - 30 -
2 8900 4000 80 30
3 9000 6000 130 80
4 9000 7000 180 130
5 9000 7500 230 180
6 - 8000 - 230

seconds of demonstrations for each of the 10 training tracks in Figure 4.2 was

collected. In total, 500 seconds worth of demonstrations was used to pre-train

the policies of all agents.

4.5 Expert Time

To measure the effectiveness of expert time, the three algorithms were trained on

three different amounts of expert time on top of the pre-training. The three levels

of expert time per track were: 50 seconds, 100 seconds and 200 seconds. In total,

that amounts to 500 seconds, 1000 seconds and 2000 seconds worth of expert

time. The amount of expert time per track was doubled each increment with the

intent to better display a relationship between performance and expert time. The

tracks were run and trained in the same order as in Figure 4.3 are presented.

4.6 Behavior Cloning

Since the BHC algorithm only requires labeled data, the expert time was spent

by demonstrating each track an additional time without interference from the

agent. The agent was then trained on the accumulated dataset after each track

was demonstrated.

24

4.7 DAGGER

The DAGGER algorithm is based on the probability βi that is slowly decreasing

to give the agent more control of the trajectory taken. β0 was initialized to

0.85 with the decreasing factor of 0.85 after each iteration to achieve a similar

learning process as the one evaluated in the paper that presented HG-DAGGER

[9]. The decreasing factor is multiplied with βi at the end of each iteration to find

βi+1. For each track, the observations and actions by the expert were collected

and aggregated into the training dataset, and subsequently used for training the

agent.

4.8 HG-DAGGER

The HG-DAGGER agent is an ensemble of ANNs, and therefore the size of the

ensemble had to be decided. To make sure that the results of such an agent would

be positive, it was decided that the size of the ensemble would be 10, as presented

in the HG-DAGGER paper [9]. According to the paper, it is also important to

initiate the ANNs in the ensemble to different weights, and therefore it was done

so in our implementation as well.

4.9 Validation

The experiment and validation of the thesis were conducted by running the agents

on all validation tracks five times each, as seen in Figure 4.3. The decision to run

each trackmultiple timeswas taken to ensure correctness because the calculations

made in the TORCS physics engine are prone to approximation errors. The agents

were left to run for 200 seconds on each track, and the distance measured was a

point along the race line of the track, that the agent was positioned at when time

ran out.

25

5 Result

In this chapter, results from the work conducted will be presented and graphs will

be explained. In section 5.1, the tables containing the result from the experiments

will be explained. In section 5.2, the graphs will be explained.

5.1 Tables

All results are available in tables B.1 to B.12, in appendix B.

Tables B.1 to B.3 display the results of the BHC agents with three different levels of

expert time. Table B.1 corresponds to 500 seconds of expert time while table B.3

corresponds to 2000 seconds of expert time. Each track was run five times each

and the min, max, median and mean distances was calculated for each one. The

results of DAGGER can be found in tables B.4 to B.6. The results of HG-DAGGER

can be found in tables B.7 to B.9.

In table B.10 the distance traveled by the expert during 200 seconds is displayed.

These distances are used for comparing the performance of agents against the

expert that trained them.

Table B.11 displays the sum of the median distances for each of the algorithms

for all three levels of expert time. The reason for choosing the median over mean

is to prevent distortion of the distances by extrema. The median is an achieved

result and therefore better coincides with the expected result. Table B.12 displays

the relative distance of the algorithms compared to the sum of median expert

distances.

5.2 Graphs

The graphs are displayed in Figures 5.1 to 5.3. The y-axis is in distance covered

and the x-axis is the five different validation tracks in Figure 4.3, unless otherwise

stated. The distances for all graphs are directly taken from Tables B.1 to B.12. The

graphs are all using the median distances from the tables in appendix B.

26

C
G
-S
p
ee
d
w
ay
1

C
G
-T
ra
ck
3

C
or
ks
cr
ew

E
-T
ra
ck
3

F
or
za

0

0.2

0.4

0.6

0.8

1
·104

D
is
ta
n
ce
(m
)

(a) Behavior Cloning

C
G
-S
p
ee
d
w
ay
1

C
G
-T
ra
ck
3

C
or
ks
cr
ew

E
-T
ra
ck
3

F
or
za

0

0.2

0.4

0.6

0.8

1
·104

D
is
ta
n
ce
(m
)

(b) DAGGER

C
G
-S
p
ee
d
w
ay
1

C
G
-T
ra
ck
3

C
or
ks
cr
ew

E
-T
ra
ck
3

F
or
za

0

0.2

0.4

0.6

0.8

1
·104

D
is
ta
n
ce
(m
)

500 sec
1000 sec
2000 sec

(c) HG-DAGGER

Figure 5.1: Graphs displaying the distance covered of an algorithm with three
different levels of expert time, during 2000 seconds on the validation tracks in
Figure 4.3.

27

C
G
-S
p
ee
d
w
ay
1

C
G
-T
ra
ck
3

C
or
ks
cr
ew

E
-T
ra
ck
3

F
or
za

0

0.2

0.4

0.6

0.8

1
·104

D
is
ta
n
ce
(m
)

(a) 0.5K sec expert time

C
G
-S
p
ee
d
w
ay
1

C
G
-T
ra
ck
3

C
or
ks
cr
ew

E
-T
ra
ck
3

F
or
za

0

0.2

0.4

0.6

0.8

1
·104

D
is
ta
n
ce
(m
)

(b) 1K sec expert time

C
G
-S
p
ee
d
w
ay
1

C
G
-T
ra
ck
3

C
or
ks
cr
ew

E
-T
ra
ck
3

F
or
za

0

0.2

0.4

0.6

0.8

1
·104

D
is
ta
n
ce
(m
)

BHC
DAGGER
HG-DAGGER

(c) 2K sec expert time

Figure 5.2: Graphs displaying the distance covered of all three algorithms, given
the same amount of expert time, during 2000 seconds on the validation tracks in
Figure 4.3.

28

B
H
C

D
A
G
G
E
R

H
G
-D
A
G
G
E
R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
of
ex
p
er
t
d
is
ta
n
ce

500 sec
1000 sec
2000 sec

(a) Performance

Figure 5.3: Graphs displaying the relative distance covered of an algorithm with
three different levels of expert time, during 2000 seconds on the validation tracks
in Figure 4.3.

29

5.2.1 Expert Time Comparisons

In Figure 5.1, three different graphs are displayed. Each of the three graphs

contains distances from a specific algorithm and compares the different levels

of expert time. Figure 5.1a displays the performance of the BHC agents with

three different levels of expert time. The data is the median distances taken from

Tables B.1 to B.3. Figure 5.1b displays the performance of the DAGGER agent

with data taken from the median distances of B.4 to B.9. Figure 5.1c displays the

performance of the HG-DAGGER agent with data from the median distances of

Tables B.7 to B.9.

5.2.2 Algorithm Comparisons

The graphs in Figure 5.2 displays the performance of the three algorithms

compared to each other, with the same expert time. In Figure 5.2a, the three

algorithms with 500 seconds of expert time are compared to each other. The

data is taken from the median distances of Tables B.1, B.4 and B.7. Figure 5.2b

compares the three agents with 1000 seconds of expert time. The data is taken

from the median distances of Tables B.2, B.5 and B.8. Figure 5.2c compares the

three different agents with 2000 seconds of expert time. The data is taken from

the median distances of Tables B.3, B.6 and B.9.

5.2.3 Performance Comparison

Figure 5.3 displays the relative distance of the three algorithms comparedwith the

expert. It is the sum of the median distance covered on all validation tracks as a

percentage of the sum ofmedian distance covered by the expert. The data is taken

from themedian distances of Table B.12. The purpose of the graph is to give some

insight into the absolute performance of the different algorithms.

30

5.3 Observations

In Figures 5.2b and 5.2c, the distance covered by the 1000 seconds and

2000 seconds HG-DAGGER agents are substantially better than the two other

algorithms displayed. Out of 5 tracks, HG-DAGGER traveled the furthest on 4 of

them, for both levels of expert time. One thing to note is that the performance of

HG-DAGGER did not increase on all tracks with an increased amount of expert

time, specifically on CG-Track 3 and E-Track 3, as can be seen in Figure 5.1c.

BHC seems to achieve its best performance with either 500 seconds or 1000

seconds of expert time, as can be seen in Figure 5.1a. A notable spike in distance

is on CG-Track 3 with 1000 seconds of expert time. This spike is also present in

Figure 5.1c with 1000 seconds of expert time, on the same track. Additionally, the

track Forza seems to have a disproportionate distance covered for both DAGGER

and HG-DAGGER with all levels of expert time, as can be seen in Figures 5.1c and

5.1b.

It can be observed in Figure 5.3 that HG-DAGGER is the best performing

algorithm of the three evaluated. There is an increase in the relative distance,

for each increase of expert time.

31

6 Conclusions

In this section, we will attempt to answer and discuss the central question of the

thesis, based on the achieved results.

How should one implement IL in a simulated car racing environment, using

human experts, to achieve the best performance when access to the experts is

limited?

The central question of the thesis will be answered in section 6.1 while the

discussion will be in section 6.2.

6.1 Conclusion

It is seen in Figure 5.3 that the agents only cover half the relative distance of the

expert in the best case. The best performance was achieved by HG-DAGGERwith

2000 seconds of expert time while the worst performance was achieved by BHC

with 500 and 2000 seconds of expert time respectively. The bad performance of

BHC was expected since it is well established that BHC preforms notoriously bad

in sequential decision-making problems [18] [9].

An observation of the learning capabilities of the three different algorithms can

be made with Figure 5.3. The only algorithm with a clear increase in performance

with an increased amount of expert time is HG-DAGGER. The BHC andDAGGER

agents both have trouble with increasing their performance according to the

increase in expert time. The reasons for this will be discussed in section 6.2.

With the delimitations of this thesis in mind, the HG-DAGGER algorithm is by

far the best option of the three algorithms presented, in the environment of this

thesis. This result is of course entirely dependent on the delimitations and subject

to change if any of the factors are changed. A comparison of related work is done

in section 6.2.4 where a similar result to the one achieved in this thesis, has been

achieved in a different environment. The result achieved in this thesis supports

the results presented in the paper that introduced HG-DAGGER [9].

32

6.2 Discussion

The results achieved on the validation tracks certainly show that the agents are not

on par with the human expert. The best result achieved is almost exactly half of

the experts, which was achieved using HG-DAGGER in 2000 seconds of training.

There exist many potential factors that contributed to this result and it will be

discussed in section 6.2.1.

6.2.1 Potential Factors of Error

A different result might have been achieved if a different ANN architecture was

used. However, due to the delimitations of this project, no attempt to find answers

to this question was done.

If different levels of expert time were used, there might have been a different

comparative result. An example of this can be directly observed if one focuses

on the 500-second point, where DAGGER can be seen outperforming the other

algorithms. It is not improbable that if a lower amount of training was used, such

that the 500 seconds was the highest level of expert time, DAGGER might have

been the algorithm with the best overall performance.

The approach to training the agents also needs to be discussed. A certain

amount of pre-training was used, which was equal for all agents. However,

presumably that the decisions made when designing the learning configuration

make a difference. Perhaps a different amount of training or even a different type

of training overall would have positively affected the result. But the delimitations

of the thesis apply for this aspect of the project as well. It would not have been

feasible for this thesis to investigate every variable with the potential to affect

the result. Instead, the result can be seen as a general guideline for the relative

performance of the different algorithms, with the same prerequisites.

Lastly, one has to take into consideration that the time constraint of the thesis.

The most prominent symptom of the tight time constraint is the small sample

size used in the validation of the agents. With only 5 runs per track, the data is

not enough to make a statement or conclusion about the absolute performance

33

of the algorithms. This causes the data to possibly misrepresent the algorithm’s

general performance. However, since the result achieved in this thesis is very

similar to previous work with the same comparison, it strengthens the validity

of our conclusion that HG-DAGGER is the best performing IL algorithm, of the

three.

6.2.2 Human Vision Versus Sensor Input

The result and conclusions of this thesis are naturally dependent on the

performance of the expert. However, there is a substantial difference in how the

agent and the expert perceive the environment. The expert is completely vision

based and therefore can see beyond the next turn. The agent on the other hand

only has access to 9 distance sensors and one speed sensor. This is limiting in

the way that the agent is only able to observe the current turn and cannot prepare

for the next turn. It can also cause the agent to become confused when training,

since the expert’s actions will not only depend on the current turn but also the

next. This, in turn, causes conflicting training data. One example of a controller

for TORCS using a vision-based input is from a paper written by Koutník et al.

[12].

6.2.3 Validation Track Difficulty

An interesting observation can be made in Figure 5.2a, where a significant spike

in performance can be observed on the track Forza with the DAGGER algorithm.

It seems rather counter-intuitive. Why would it perform incredibly well on this

specific track, with the least amount of training available, and then never perform

at the same level when more training is introduced? A certain answer to this

question cannot be given due to the nature of ML, however, an attempt to provide

a few probable reasons for this anomaly will be made.

Over-training is a very common reason for performance decrease with an

increased amount of training. However, over-training mostly occurs when the

dataset is too small or too similar. This is not the case for the training approach

taken for this thesis since more data points are added as the expert time level

34

increases. Therefore, it should not be over-training per se, yet it could be

something related to the nature of over-training. When analyzing this anomaly,

the characteristics of the track into consideration, which can be found in Figure

4.3, picture e. Forza is a very simple track with long straights and few curves, in

comparison to the training tracks found in Figure 4.2. One possible explanation is

that the track might not be well represented in the training data, and a solution to

the track is not achieved through a generalization of the training maps. The small

amount of training on the non-related maps to Forza would, therefore, allow for

a more general solution for Forza, in a sense.

Another point to consider is the characteristics of the DAGGER algorithm. One

observation made when training the ANN with DAGGER was the difficulty of

making small corrections, like changing positioning on a straight, etc. If the

expert was unfortunate and not given enough control because of the stochastic

implementation, exaggerated turning data would create contradict the previous

data and training. The paper that introduced HG-DAGGER brought up the issue

of pilot-induced oscillations, when the pilot overcorrects the system in an attempt

to stabilize an aircraft. This causes the aircraft control system to react in a more

violent counteraction, leading to a greater response from the pilot in turn [9]. In

reality, the expert only wanted to tweak the positioning of the car, but it could

easily cause the agent to become confused when faced with a similar situation in

the future. This is only one example of the problem with contradictory data, that

occurs with the DAGGER implementation.

6.2.4 Validation of result

In the paper concerning theHG-DAGGER algorithmbyKelly et al., they perform a

similar comparison of the same IL algorithms. Their implementation is an actual

self-driving car andnot in a simulator, but they still achieved very similar results to

the ones presented in this thesis. It suggests that the results achieved in this thesis

are not specific to our implementation, but a more general conclusion. Some

points of similarity observed between the results are:

• HG-DAGGER scales the best with increased expert time.

35

• DAGGER and BHCs performance worsen at higher amounts of training.

6.3 Future Work

For future work, one could attempt to recreate our experiment but with different

data, and perhaps widen the scope to more points of comparison. Preferably

both higher and lower values than used in this thesis, to create a more general

understanding of the performance of the algorithms. It would certainly be

interesting to see how the performance of HG-DAGGERwould evolve when given

more training data.

The choice of topology in the ANN’s is also something that needs a thorough

investigation to find the optimal setup for the different algorithms. Perhaps they

perform differently, relatively speaking, with different networks which therefore

makes itmore suitable to compare the algorithmswith differentANN’s rather than

the same, as is done in our case.

36

References

[1] Bratko, Ivan, Urbančič, Tanja, and Sammut, Claude. “Behavioural cloning:

phenomena, results and problems”. In: IFAC Proceedings Volumes 28.21

(1995), pp. 143–149.

[2] Community, Pygame. Pygame. 2018. url: https://www.pygame.org/wiki/

about (visited on 04/24/2019).

[3] Daumé III, Hal. A Course in Machine Learning. Self-Published, 2013.

[4] Edwards, Chris X. SnakeOil. 2017. url: http : / / xed . ch / p / snakeoil/

(visited on 04/22/2019).

[5] Greenblatt, Jeffery B. and Shaheen, Susan. “Automated

Vehicles, On-Demand Mobility, and Environmental Impacts”. In: Current

Sustainable/Renewable Energy Reports 2.3 (Sept. 2015), pp. 74–81. issn:

2196-3010. doi: 10.1007/s40518-015-0038-5. url: https://doi.org/10.

1007/s40518-015-0038-5.

[6] Håkansson, Anne. “Portal of Research Methods and Methodologies

for Research Projects and Degree Projects”. In: Proceedings of the

International Conference on Frontiers in Education : Computer Science

and Computer Engineering FECS’13. QC 20131210. CSREA Press U.S.A,

2013, pp. 67–73. isbn: 1-60132-243-7. url: http://www.world-academy-

of-science.org/worldcomp13/ws.

[7] Heuvel, Jeroen van den, Wiering, Marco A., and Kosters, Walter A.

Temporal exploration for reinforcement learning in continuous action

spaces. 2016.

[8] Hopfield, John J. “Neural networks and physical systems with emergent

collective computational abilities”. In: Proceedings of the national

academy of sciences 79.8 (1982), pp. 2554–2558.

[9] Kelly, Michael et al. “HG-DAgger: Interactive Imitation Learning with

Human Experts”. In: CoRR abs/1810.02890 (2018). arXiv: 1810 . 02890.

url: http://arxiv.org/abs/1810.02890.

[10] Keras. Keras. 2019. url: https://keras.io/ (visited on 04/10/2019).

37

https://www.pygame.org/wiki/about
https://www.pygame.org/wiki/about
http://xed.ch/p/snakeoil/
https://doi.org/10.1007/s40518-015-0038-5
https://doi.org/10.1007/s40518-015-0038-5
https://doi.org/10.1007/s40518-015-0038-5
http://www.world-academy-of-science.org/worldcomp13/ws
http://www.world-academy-of-science.org/worldcomp13/ws
http://arxiv.org/abs/1810.02890
http://arxiv.org/abs/1810.02890
https://keras.io/

[11] Kingma, Diederik P and Ba, Jimmy. “Adam: A method for stochastic

optimization”. In: arXiv preprint arXiv:1412.6980 (2014).

[12] Koutnik, Jan et al. “Evolving large-scale neural networks for vision-based

torcs”. In: (2013).

[13] Loiacono, Daniele, Cardamone, Luigi, and Lanzi, Pier Luca. Simulated Car

Racing Championship Competition Software Manual. 2013.

[14] Martin Abadi et al. TensorFlow: Large-Scale Machine Learning on

Heterogeneous Systems. Software available from tensorflow.org. 2015. url:

https://www.tensorflow.org/.

[15] Mirus, Florian. Torcs-1.3.7-SCR-Patch. 2018. url: https://github.com/

fmirus/torcs-1.3.7 (visited on 04/23/2019).

[16] Muñoz, Jorge, Gutierrez, German, and Sanchis, Araceli. “A human-like

TORCS controller for the Simulated Car Racing Championship”. In:

Proceedings of the 2010 IEEE Conference on Computational Intelligence

and Games. IEEE. 2010, pp. 473–480.

[17] Rafiq, M.Y, Bugmann, G, and Easterbrook, D.J. “Neural network design

for engineering applications”. In: Computers & Structures 79.17 (2001),

pp. 1541–1552. issn: 0045-7949. doi: https://doi.org/10.1016/S0045-

7949(01) 00039 - 6. url: http : / / www . sciencedirect . com / science /

article/pii/S0045794901000396.

[18] Ross, Stéphane, Gordon, Geoffrey, and Bagnell, Drew. “A reduction of

imitation learning and structured prediction to no-regret online learning”.

In: Proceedings of the fourteenth international conference on artificial

intelligence and statistics. 2011, pp. 627–635.

[19] Rossum, G. van. Python tutorial. Tech. rep. CS-R9526. Amsterdam:

Centrum voor Wiskunde en Informatica (CWI), Apr. 1995.

[20] Schaal, Stefan. “Is imitation learning the route to humanoid robots?” In:

Trends in Cognitive Sciences 3.6 (1999), pp. 233–242. issn: 1364-6613.

doi: https://doi.org/10.1016/S1364- 6613(99)01327- 3. url: http:

//www.sciencedirect.com/science/article/pii/S1364661399013273.

38

https://www.tensorflow.org/
https://github.com/fmirus/torcs-1.3.7
https://github.com/fmirus/torcs-1.3.7
https://doi.org/https://doi.org/10.1016/S0045-7949(01)00039-6
https://doi.org/https://doi.org/10.1016/S0045-7949(01)00039-6
http://www.sciencedirect.com/science/article/pii/S0045794901000396
http://www.sciencedirect.com/science/article/pii/S0045794901000396
https://doi.org/https://doi.org/10.1016/S1364-6613(99)01327-3
http://www.sciencedirect.com/science/article/pii/S1364661399013273
http://www.sciencedirect.com/science/article/pii/S1364661399013273

[21] Silver, David et al. “A general reinforcement learning algorithm that

masters chess, shogi, and Go through self-play”. In: Science 362.6419

(2018), pp. 1140–1144. issn: 0036-8075. doi: 10.1126/science.aar6404.

eprint: http://science.sciencemag.org/content/362/6419/1140.full.

pdf. url: http://science.sciencemag.org/content/362/6419/1140.

[22] Sweden, Drive. Drive Sweden. 2019. url: https://www.drivesweden.net/

(visited on 04/03/2019).

[23] Swingler, Kevin. Applying neural networks: a practical guide. Morgan

Kaufmann, 1996.

[24] Wymann, Bernhard. car1-trb1. 2017. url: http://www.berniw.org/trb/

cars/car_view.php?viewcarid=5 (visited on 04/25/2019).

[25] Wymann, Bernhard et al. “Torcs, the open racing car simulator”. In:

Software available at http://torcs. sourceforge. net 4.6 (2000).

[26] Yue, Yisong and Le, Hoang M. Imitation Learning. International

Conference on Machine Learning Presentation. 2018.

[27] Zhang, Aston et al. Dive into Deep Learning. http://www.d2l.ai. 2019.

39

https://doi.org/10.1126/science.aar6404
http://science.sciencemag.org/content/362/6419/1140.full.pdf
http://science.sciencemag.org/content/362/6419/1140.full.pdf
http://science.sciencemag.org/content/362/6419/1140
https://www.drivesweden.net/
http://www.berniw.org/trb/cars/car_view.php?viewcarid=5
http://www.berniw.org/trb/cars/car_view.php?viewcarid=5
http://www.d2l.ai

Appendices

40

Appendix - Contents

A TORCS sensors and actuators 42

B Experiment Data 47

41

A TORCS sensors and actuators

Table A.1: Available sensors in the TORCS environment [13, pp. 13-14]

Name Range (unit) Description

angle [−π,+π] (rad) Angle between the car direction and the

direction of the track axis.

curLapTime [0,+∞) (s) Time elapsed during current lap

damage [0,+∞) (point) Current damage of the car (the higher is the

value the higher is the damage).

distFromStart [0,+∞) (m) Distance from the start line along the track

line

distRaced [0,+∞) (m) Distance covered by the car from the

beginning of the race

42

focus [0, 200] (m) Vector of 5 range finder sensors: each

sensor returns the distance between the

track edge and the car within the range of

200 meters. When noisy option is enabled

sensors are affected by i.i.d. normal-noises

with a standard deviation equal to the 1%

of sensors range. The sensors sample, with

a resolution of one degree, a five-degree

space along a specific direction provided by

the client (the direction is defined with the

focus command andmust be in the range [-

90,+90] degrees w.r.t the car axis). Focus

sensors are not always available: they can

be used only once per second of simulated

time. When the car is outside of the track

(i.e. pos is less than -1 or greater than 1),

the focus direction is outside the allowed

range([-90,+90] degrees) or the sensors

has been already used once in the last

second, the returned values are not reliable

(typically -1 is returned).

fuel [0, 200] (m) Current fuel level

gear −1, 0, 1...6 Current gear: -1 is reverse, 0 is neutral and

the gear from 1 to 6.

lastLapTime [0,+∞] (s) Time to complete the last lap

43

opponents [0, 200] (m) Vector of 36 opponent sensors: each sensor

covers a span of 10 degrees within a range

of 200 meters and return the distance of

the closest opponent in the covered area.

When noisy option is enabled, sensors

are affected by i.i.d. normal noises with

a standard deviation equal to the 2% of

sensors range. The 36 sensors cover all the

space around the car, spanning clockwise

from -180 degrees up to +180 degrees with

respect to the car axis.

racePos 1, 2, ..., N Position in the racewith respect to the other

cars.

rpm [0,+∞) (s) Number of rotations per minute of the car

engine.

speedX (−∞,+∞) (km/h) Speed of the car along the longitudinal axis

of the car.

speedY (−∞,+∞) (km/h) Speed of the car along the transverse axis of

the car.

speedZ (−∞,+∞) (km/h) Speed of the car along the Z axis of the car.

44

track [0, 200] Vector of 19 range finder sensors: each

sensor returns the distance between the

track edge and the car within a range of

200 meters. When noisy option is enabled

sensors are affected by i.i.d. normal noises

with a standard deviation equal to the 10%

of sensors range. By default, the sensors

sample the space in front of the car every

10 degrees, spanning clockwise with -90

degrees up to +90 degrees with respect to

the car axis. However, the configuration

of the range finder sensors (i.e., the angle

w.r.t. to the car axis) can be set by the

client once during initialization, i.e., before

the beginning of each race. When the car is

outside of the track (i.e., pos is less than -1

or greater than 1), the returned value is not

reliable (typically -1 is returned)

trackPos (−∞,+∞) Distance between the car and the track

axis. The value is normalized w.r.t the track

width: it is 0 when car is on the axis, -1

when the car is on the right edge of the track

and +1 when it is on the left edge of the

car. Values greater than 1 or smaller than

-1 mean that the car is outside of the track.

wheelSpinVel [0,+∞] (rad/s) Vector of 4

sensors representing the rotation speed of

wheels.

z (−∞,+∞) (m) Distance of the car mass center from the

surface of the track along the Z axis.

45

Table A.2: Available actuators in the TORCS environment [13, p. 14]

Name Range (unit) Description

accel [0, 1] Virtual gas pedal (0 means no gas, 1 full

gas).

brake [0, 1] Virtual brake pedal (0meansnobrake, 1 full

brake).

clutch [0, 1 Virtual clutch pedal (0 means no clutch, 1

full clutch).

gear −1, 0, 1, ..., 6 Gear value.

steering [−1, 1] Steering value: -1 and +1

means respectively full right and left, that

corresponds to an angle of 0.366519 rad.

focus [−90, 90] Focus direction in degrees.

meta 0, 1 This is meta-control command: 0 do

nothing, 1 ask competition server to restart

the race.

46

B Experiment Data

Table B.1: Distance that BHC agent with 500 sec of expert time covered on
validation tracks in Figure 4.3 during 2000 sec.

BHC 0.5K sec CG-Speedway 1 CG-Track 3 Corkscrew E-Track 3 Forza
RUN 1 870.37 244.93 1377.68 401.41 89.70
RUN 2 1537.64 243.79 1367.67 401.38 394.90
RUN 3 925.93 265.88 1077.56 401.32 394.59
RUN 4 263.63 243.58 914.49 401.06 91.24
RUN 5 266.09 243.73 1112.99 401.23 394.90

MIN 263.63 243.58 914.49 401.06 89.70
MAX 1537.64 265.88 1377.68 401.41 394.90

MEDIAN 870.37 243.79 1112.99 401.32 394.59
MEAN 772.73 248.38 1170.08 401.28 273.07

Table B.2: Distance that BHC agent with 1000 sec of expert time covered on
validation tracks in Figure 4.3 during 2000 sec.

BHC 1K sec CG-Speedway 1 CG-Track 3 Corkscrew E-Track 3 Forza
RUN 1 1.46 5932.29 463.51 2255.67 722.98
RUN 2 1.26 5939.45 1352.02 2133.93 717.38
RUN 3 1.26 4306.36 463.08 2108.92 721.79
RUN 4 1.26 5944.48 463.12 2023.74 721.47
RUN 5 1.26 5798.56 457.65 2246.99 724.42

MIN 1.26 4306.36 457.65 2023.74 717.38
MAX 1.46 5944.48 1352.02 2255.67 724.42

MEDIAN 1.26 5932.29 463.12 2133.93 721.79
MEAN 1.30 5584.23 639.88 2153.85 721.61

Table B.3: Distance that BHC agent with 2000 sec of expert time covered on
validation tracks in Figure 4.3 during 2000 sec.

BHC 2K sec CG-Speedway 1 CG-Track 3 Corkscrew E-Track 3 Forza
RUN 1 10.39 2724.75 498.26 256.72 237.27
RUN 2 9.44 2284.83 480.56 255.90 235.24
RUN 3 10.83 2281.10 480.07 255.90 237.27
RUN 4 10.21 2759.88 480.89 254.94 238.16
RUN 5 11.01 2281.39 498.54 255.90 237.27

MIN 9.44 2281.10 480.07 254.94 235.24
MAX 11.01 2759.88 498.54 256.72 238.16

MEDIAN 10.39 2284.83 480.89 255.90 237.27
MEAN 10.38 2466.39 487.66 255.87 237.04

47

Table B.4: Distance that DAGGER agent with 500 sec of expert time covered on
validation tracks in Figure 4.3 during 2000 sec.

DAGGER 0.5K sec CG-Speedway 1 CG-Track 3 Corkscrew E-Track 3 Forza
RUN 1 448.32 2420.77 465.39 449.39 8333.44
RUN 2 439.76 1300.09 465.47 448.73 8298.11
RUN 3 447.71 1306.12 465.44 447.94 8279.47
RUN 4 434.16 2432.55 465.66 447.38 2859.13
RUN 5 438.55 2458.27 465.23 448.75 3885.19

MIN 434.16 1300.09 465.23 447.38 2859.13
MAX 448.32 2458.27 465.66 449.39 8333.44

MEDIAN 439.76 2420.77 465.44 448.73 8279.47
MEAN 441.70 1983.56 465.44 448.44 6331.07

Table B.5: Distance that DAGGER agent with 1000 sec of expert time covered on
validation tracks in Figure 4.3 during 2000 sec.

DAGGER 1K sec CG-Speedway 1 CG-Track 3 Corkscrew E-Track 3 Forza
RUN 1 1309.60 419.05 466.83 433.38 2507.56
RUN 2 1315.74 19.05 471.04 433.37 2477.08
RUN 3 1314.42 274.12 467.41 433.37 2478.08
RUN 4 1305.04 19.04 475.23 433.45 5086.34
RUN 5 1313.78 274.17 466.84 433.38 2476.04

MIN 1305.04 19.04 466.83 433.37 2476.04
MAX 1315.74 419.05 475.23 433.45 5086.34

MEDIAN 1313.78 274.12 467.41 433.38 2478.08
MEAN 1311.72 201.09 469.47 433.39 3005.02

Table B.6: Distance that DAGGER agent with 2000 sec of expert time covered on
validation tracks in Figure 4.3 during 2000 sec.

DAGGER 2K sec CG-Speedway 1 CG-Track 3 Corkscrew E-Track 3 Forza
RUN 1 1103.08 332.95 496.62 165.44 2593.79
RUN 2 1108.30 332.97 496.56 168.05 2550.35
RUN 3 1107.86 335.96 496.59 168.34 2772.05
RUN 4 1100.73 332.85 496.56 468.20 2590.57
RUN 5 1102.10 332.90 496.43 466.38 2545.18

MIN 1100.73 332.85 496.43 165.44 2545.18
MAX 1108.30 335.96 496.62 468.20 2772.05

MEDIAN 1103.08 332.95 496.56 168.34 2590.57
MEAN 1104.41 333.53 496.55 287.28 2610.39

48

Table B.7: Distance that HG-DAGGER agent with 500 sec of expert time covered
on validation tracks in Figure 4.3 during 2000 sec.

HG-DAGGER 0.5K sec CG-Speedway 1 CG-Track 3 Corkscrew E-Track 3 Forza
RUN 1 1965.37 1666.70 1542.64 438.85 5102.42
RUN 2 1962.88 1663.34 1542.61 440.01 2776.73
RUN 3 1968.66 1662.82 1542.52 440.00 2774.71
RUN 4 1964.44 1660.52 1542.66 440.17 2777.88
RUN 5 1960.94 1661.03 1540.15 440.35 3138.74

MIN 1960.94 1660.52 1540.15 438.85 2774.71
MAX 1968.66 1666.70 1542.66 440.35 5102.42

MEDIAN 1964.44 1662.82 1542.61 440.01 2777.88
MEAN 1964.46 1662.88 1542.12 439.88 3314.10

Table B.8: Distance that HG-DAGGER agent with 1000 sec of expert time covered
on validation tracks in Figure 4.3 during 2000 sec.

HG-DAGGER 1K sec CG-Speedway 1 CG-Track 3 Corkscrew E-Track 3 Forza
RUN 1 1078.98 6335.57 506.60 4736.72 8108.11
RUN 2 1056.78 6329.21 506.50 4684.04 4178.30
RUN 3 1056.03 6336.20 505.82 7324.76 8183.41
RUN 4 5217.70 1855.23 505.79 472.33 4171.90
RUN 5 3112.62 6340.88 504.59 7398.01 2567.23

MIN 1056.03 1855.23 504.59 472.33 2567.23
MAX 5217.70 6340.88 506.60 7398.01 8183.41

MEDIAN 1078.98 6335.57 505.82 4736.72 4178.30
MEAN 2304.42 5439.42 505.86 4923.17 5441.79

Table B.9: Distance thatHG-DAGGER agent with 2000 sec of expert time covered
on validation tracks in Figure 4.3 during 2000 sec.

HG-DAGGER 2K sec CG-Speedway 1 CG-Track 3 Corkscrew E-Track 3 Forza
RUN 1 8239.90 502.63 2463.70 1466.43 9350.27
RUN 2 8246.25 164.20 2462.18 1452.30 9509.90
RUN 3 8233.34 159.35 2462.32 1479.57 9525.46
RUN 4 8238.92 505.23 2460.15 1473.35 3866.06
RUN 5 8223.52 500.09 2462.32 1473.27 9499.01

MIN 8223.52 159.35 2460.15 1452.30 3866.06
MAX 8246.25 505.23 2463.70 1479.57 9525.46

MEDIAN 8238.92 500.09 2462.32 1473.27 9499.01
MEAN 8236.39 366.30 2462.13 1468.98 8350.14

49

Table B.10: Distance that the expert covered on validation tracks in Figure 4.3
during 2000 sec.

EXPERT 2K sec CG-Speedway 1 CG-Track 3 Corkscrew E-Track 3 Forza
RUN 1 9221.68 8066.86 7723.20 8107.72 11151.36
RUN 2 9342.13 7659.33 7654.91 7958.30 11297.87
RUN 3 8945.60 8143.50 7549.50 7991.59 10957.70
RUN 4 9111.62 8021.90 7891.47 8276.24 11432.71
RUN 5 9150.90 8267.30 7566.78 8158.78 11249.11

MIN 8945.60 7659.33 7549.50 7958.30 10957.70
MAX 9342.13 8267.30 7891.47 8276.24 11432.71

MEDIAN 9150.90 8066.86 7654.91 8107.72 11249.11
MEAN 9154.39 8031.78 7677.17 8098.53 11217.75

Table B.11: Sum of median distance for all three algorithms with three different
levels of expert time.

Sum of median values BHC DAGGER HG-DAGGER
0.5K 3023.06 12054.17 8387.76
1K 9252.39 4966.77 16835.39
2K 3269.28 4691.50 22173.61

Table B.12: The median relative distance covered of all three algorithms in regard
to the expert on the validation tracks in Figure 4.3.

Relative Distance BHC DAGGER HG-DAGGER
0.5K 0.07 0.27 0.19
1K 0.21 0.11 0.38
2K 0.07 0.11 0.50

50

TRITA-EECS-EX-2019:255

www.kth.se

	Introduction
	Background
	Problem
	Purpose
	Goal
	Benefits, Ethics and Sustainability
	Methodology
	Stakeholders
	Delimitations
	Outline

	Background
	Artificial Neural Network
	Artificial Neuron
	Activation Function
	Loss Function
	Optimization Function
	Training an ANN
	Selecting a Topology for an ANN
	Keras

	Imitation Learning
	Agent
	Expert

	Behavior Cloning
	DAGGER
	HG-DAGGER
	TORCS Environment
	Related Work
	DAGGER
	HG-DAGGER
	Temporal Exploration
	A Human-Like TORCS Controller
	Vision-Based Neural Networks for TORCS

	Method
	Implementation
	Testing
	Research Paradigm

	Implementation
	Agent
	Tracks
	Automatic Transmission
	Pre-Training
	Expert Time
	Behavior Cloning
	DAGGER
	HG-DAGGER
	Validation

	Result
	Tables
	Graphs
	Expert Time Comparisons
	Algorithm Comparisons
	Performance Comparison

	Observations

	Conclusions
	Conclusion
	Discussion
	Potential Factors of Error
	Human Vision Versus Sensor Input
	Validation Track Difficulty
	Validation of result

	Future Work

	References
	TORCS sensors and actuators
	Experiment Data

